Applications of a nonlinear photon switch to Hardy's Paradox and Bell-state determination

Jeff Lundeen, Kevin Resch and Aephraim Steinberg University of Toronto, Dept. of Physics PQE XXXV

Financial Support from NSERC, CFI, and Photonics Research Ontario, DARPA QuIST

Can we construct a two-photon gate?

Photons do not naturally interact: Great for transmission. Not so great for calculation.

Proposed Solutions:

- Better materials by a factor of 10¹⁰
 Absorptive nonlinearities (Franson), Resonance in Micro-structures (Gaeta, Walmsley)
- Cavity Quantum Electrodynamics
 Haroche, Kimble, Walther, Rempe
- EIT

Harris, Scully, Lukin, Fleishhauer, Hau

- Measurement-induced nonlinearities
 Knill, Laflamme, Milburn, Franson, White, Zeilinger
- Interference-enhanced nonlinearities Exchange effects in atomic clouds (Franson), $\chi^{(2)}$ with interference (Steinberg)

Spontaneous Parametric Downconversion

• A pump photon is spontaneously converted into two lower frequency photons in a material with a nonzero $\chi^{(2)}$

Momentum is conserved..

The Switch

PQE XXXV

The Absorptive Gate

 Phase chosen so that all photon pairs are "absorbed" into the pump beam

- On average < 1 photon per pulse
- One photon controls the transmission of the other beam
- \bullet The blue pump beam acts as a catalyst increasing SHG by a factor of 10^{10}

The Phase Gate

Set two-photon amplitudes so that they add up to give a phase-shifted output

Resch et al, Phys. Rev. Lett. 89, 037914 (2002)

Measurement of Phase-shift

• Turn one of the input beams into a Mach-Zehnder and insert gate in one arm

Variable Phase-Shifts

Caveats

- Typically, optical quantum computing uses single photons
- Single-photons do not have a well defined phase
- Both the absorptive gate and the phase gate rely on interference and hence require input beams with a well defined phase
- In practice: Input beams = weak coherent states or SPDC beams
- Concept: We can't know in advance whether the input beams contain a photon or not

Bell-state Analyzer

• Impossible to measure all four Bell-states with linear-optics

- Converts each Bell-state to a different basis state (i.e. |? **m**? |HHm)
- Insert interference-based phasegate in place of CPHASE
- Works for Dense-Coding (send 2 bits with one photon)

• Doesn't work for Teleportation

Resch and AI, in *The Physics of Communication*, Proc. XXII Solvay Conf. on Physics, Antoniou, Sadovnichy, and Walther eds., World Scientific (2003), pp 437-451. PQE XXX

$$\begin{split} |0\rangle &- \varepsilon \left|\psi^{-}\right\rangle \longrightarrow |0\rangle + \varepsilon \left|H\right\rangle_{1} \left|H\right\rangle_{2} \\ |0\rangle &- \varepsilon \left|\psi^{+}\right\rangle \longrightarrow |0\rangle + \varepsilon \left|H\right\rangle_{1} \left|V\right\rangle_{2} \\ |0\rangle &- \varepsilon \left|\phi^{-}\right\rangle \longrightarrow |0\rangle + \varepsilon \left|V\right\rangle_{1} \left|H\right\rangle_{2} \\ |0\rangle &- \varepsilon \left|\phi^{+}\right\rangle \longrightarrow |0\rangle + \varepsilon \left|V\right\rangle_{1} \left|V\right\rangle_{2} \end{split}$$

Interaction-Free Measurement

Hardy's Paradox

- Can we talk about the past in postselected QM?
- How should we interpret indirect quantum measurements?

Experimental Setup

Experimental Data

Experimental Data

Testing IFM+	f D+ clicks Þ	Photon is in arm I- Photon is in arm O-	96% 4%
Testing IFM-	If D- clicks Þ	Photon is in arm I+ Photon is in arm O+	97% 3%
Testing SwitchRate of photon pairs in I+ and I- = 10.4 ± 0.33/5s			
The Paradox	Rate of D+ and D- coincidences = 7.28 ± 0.41/5s		

Weak Measurements

\Rightarrow small disturbance

 \Rightarrow little system – pointer entanglement

DXDP ^{3} h/2p

- \Rightarrow simultaneous measurement of different weak values
- ⇒ useful for investigating post-selected systems: Hardy's Paradox

Weak Measurements in Hardy's Paradox

Y. Aharanov, A. Botero, S. Popescu, B. Reznik, J. Tollaksen, Phys. Lett. A 301, 130 (2001)

Resch & Steinberg, PRL 92,130402 (2004)

Conclusions

• Interference-enhanced $\chi^{(2)}$ nonlinearities can be used to make absorptive and phase gates

- The phase-gate can be used to make a Bellstate analyzer useful for Dense-coding
- A single-photon level switch allows photons to annihilate each other with a high efficiency in Hardy's Paradox
- We are now experimenting with weak measurements in Hardy's Paradox.

