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It has been proposed that the ability to perform joint weak measurements on postselected systems

would allow us to study quantum paradoxes. These measurements can investigate the history of those

particles that contribute to the paradoxical outcome. Here we experimentally perform weak measurements

of joint (i.e., nonlocal) observables. In an implementation of Hardy’s paradox, we weakly measure the

locations of two photons, the subject of the conflicting statements behind the paradox. Remarkably, the

resulting weak probabilities verify all of these statements but, at the same time, resolve the paradox.
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Retrodiction is a controversial topic in quantum me-
chanics [1]. How much is one allowed to say about the
history (e.g., particle trajectories) of a postselected en-
semble? Historically, this has been deemed a question
more suitable for philosophy (e.g., counterfactual logic)
than physics; since the early days of quantum mechanics,
the standard approach has been to restrict the basis of our
physical interpretations to direct experimental observa-
tions. On the practical side of the question, postselection
has recently grown in importance as a tool in fields such as
quantum information: e.g., in linear optics quantum com-
putation [2], where it drives the logic of quantum gates, and
in continuous variable systems, for entanglement distilla-
tion [3]. Weak measurement is a relatively new experimen-
tal technique for tackling just this question. It is of
particular interest to carry out weak measurements of
multiparticle observables, such as those used in quantum
information. Here we present an experiment that uses weak
measurement to examine the two-particle retrodiction par-
adox of Hardy [4,5], confirming the validity of certain
retrodictions and identifying the source of the apparent
contradiction.

Hardy’s paradox is a contradiction between classical
reasoning and the outcome of standard measurements on
an electron E and positron P in a pair of Mach-Zehnder
interferometers (see Fig. 1). Each interferometer is first
aligned so that the incoming particle always leaves through
the same exit port, termed the ‘‘bright’’ port B (the other is
the ‘‘dark’’ port D). The interferometers are then arranged
so that one arm (the ‘‘inner’’ arm I) from each interfer-
ometer overlaps at Y. It is assumed that if the electron and
positron simultaneously enter this arm, they will collide
and annihilate with 100% probability. This makes the
interferometers ‘‘interaction-free measurements’’ (IFMs)
[6]; that is, a click at the dark port indicates the interference
was disturbed by an object located in one of the interfer-
ometer arms, without the interfering particle itself having
traversed that arm. Therefore, in Hardy’s paradox a click at
the dark port of the electron (positron) interferometer in-
dicates that the positron (electron) was in the inner arm.
Consider if one were to detect both particles at the dark

ports. As IFMs, these results would indicate the particles
were simultaneously in the inner arms and, therefore,
should have annihilated. But this is in contradiction to
the fact that they were actually detected at the dark ports.
Paradoxi-
cally, one does indeed observe simultaneous clicks at the
dark ports [7], just as quantum mechanics predicts.
Weak measurements have been performed in classical

optical experiments [8], as well as on the polarization of
single photons [9]. Weak measurements of joint observ-
ables are particularly important, as this class of observables
includes nonlocal observables, which can be used to create
and identify multiparticle entanglement (e.g., in cluster
state computing [10]). Joint observables also include se-
quential measurements on a single particle, allowing them
to characterize time evolution in a system [11]. In this
experiment, we demonstrate a new technique that for the
first time enables us to perform joint weak measurements.
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FIG. 1 (color online). Hardy’s paradox setup. E and P indicate
electron and positron, respectively, which can collide in region
Y. BS1P, BS1E, BS2P, and BS2E are 50:50 beam splitters.D and
B are the dark and bright ports of the interferometers, respec-
tively. I and O are the inner and outer interferometer arms,
respectively.
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With this technique, we implement a proposal by
Aharonov et al. [5] to weakly measure the simultaneous
location of the two path-entangled photons in Hardy’s
paradox [4]. This technique opens up the possibility of
in situ interrogation and characterization of complex multi-
particle quantum systems such as those used in quantum
information.

A standard measurement collapses the measured system,
irreversibly destroying the original quantum state of the
system. Postselected subensembles are particularly diffi-
cult to investigate since measurements on the ensemble
before the postselection will collapse the system and, thus,
alter the action of the postselection itself. Weak measure-
ment was devised by Aharonov, Albert, and Vaidman as a
way of circumventing these problems [12]. It is an exten-
sion of the standard von Neumann measurement model
[13] in which the coupling g between the measured system
and the measurement device is made asymptotically small.
This has the drawback of reducing the amount of informa-
tion that one retrieves in a single measurement. The reward
is that the consequent disturbance of the measured system
is correspondingly small. To extract useful information,
one must repeat the measurement on a large ensemble of
identical quantum systems. The average result is called the

‘‘weak value,’’ denoted hĈiW , where Ĉ is the measured
operator.

To set up Hardy’s paradox, we use two photons instead
of the electron and positron. The experimental setup is
shown in Fig. 2. A diode laser produces a 30 mW
405 nm beam (blue dashed line) which is filtered by a
blue glass filter (BF) and sent through a dichroic mirror
(DM). This beam produces 810 nm collinear photon pairs
(red solid line) in a 4 mm long �-barium borate (BBO)
crystal through the process of type II spontaneous para-
metric down-conversion. These pairs, consisting of a ver-
tical (E) photon and a horizontal (P) photon, take the place
of the electron and positron. The pump passes through a
second DM, to later be retroreflected. The photon pair
passes through a filter (F) to remove any residual pump
light, followed by a 2 mm thick BBO crystal (CC), to
compensate for the birefringent delay in the first crystal.
The photon pair then meets a 50=50 beam splitter
(BS1EP), which acts as the first beam splitter in both the
E and P interferometers, so that each photon can either be
retroreflected and enter the inner arm or be transmitted and
enter the outer arm.

In place of electron-positron annihilation, a quantum
interference effect acts as an absorptive two-photon switch
(Y) [14]. Photons reflected into the inner arm pass back
through the BBO crystal along with the retroreflected
pump beam. The amplitude for the retroreflected pump to
create a pair of photons in the crystal is set to interfere
destructively with the amplitude for a photon pair in the
inner arms. Thus, if both the E and P photons enter their
inner arms, they are removed, whereas if only a single
photon enters, it passes through the crystal unimpeded. We

overlap the temporal modes of the two amplitudes by
making the path of the pump from the crystal to the mirror
and back to the crystal equal in length to the analogous path
of the photons reflected by BS1EP. Fine adjustment of this
length sets the phase difference of the amplitudes to be Pi
radians, thereby eliminating 85� 3% of the pairs of pho-
tons in the inner arms.
Photons transmitted at the first beam splitter enter the

outer arms, which contain a variable delay. Next, both the
inner and outer paths encounter polarizing beam splitters
(PBSs) so that the E and P photons are split into their own
spatially separate interferometers. The E interferometer
contains an additional variable delay so that both interfer-
ometers can be adjusted to have the same path-length
difference. The inner (solid line) and outer (dotted line)
paths of the two interferometers are recombined at two
nonpolarizing beam splitters (BS2E and BS2P), taking the
place of the final Mach-Zehnder beam splitters for the
electron and positron. Tilted quartz pieces (Q) before and
after BS2E and P compensate for undesired polarization
phase shifts in them.
Placing a half-wave plate in an arm allows us to measure

whether a photon travelled through this arm. To understand
how this functions, consider a half-wave plate placed in the
E outer arm aligned so as rotate the polarization of a
photon passing through it by 90�. The polarization of the
photon arriving at the E dark port then perfectly indicates if
it was in the E outer arm or not. This a measurement of the

‘‘occupation’’ N̂ðMKÞ of the M ¼ I or O (inner or outer)

interferometer arm by photon K ¼ E or P [e.g., N̂ðOEÞ ¼
jOEihOEj]. Unfortunately, this procedure is a standard
projective measurement and, hence, strongly disturbs the
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FIG. 2 (color online). The experimental setup for the weak
measurement of arm occupations N in Hardy’s paradox. An
orthogonally polarized collinear photon pair is produced in the
BBO crystal. Each photon can be either reflected or transmitted
at beam splitter BS1EP (entering the inner or outer arms,
respectively). Pair annihilation in the inner arms is achieved
by an absorptive switching effect at Y. PBSs then separate the
collinear photons into their own interferometers, E and P. Weak
measurements of N are induced with half-wave plates (�=2) in
the chosen arms and read out by PAs at the interferometer dark
ports. See the text for more details.
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system. In particular, the interference will be destroyed as
the two paths are now completely distinguishable, and,
thus, the interferometer will not function as an IFM. The

strength of the measurement interaction [Û ¼
expð�igN̂�̂yÞ] is parametrized by g � �, the polarization

rotation. In this experiment, we reduce this disturbance by
rotating the photon’s polarization by only 20�, reducing g
fourfold, and thereby performing a weak measurement.
The trade-off is that it is now impossible to know through
which arm a particular detected photon went. Instead, we
measure the average polarization rotation at the detector
over many trials to find what fraction of photons passed
through that particular arm. If no rotation is observed, then
the classical inference would be that the photon was never
in the arm with the wave plate. Conversely, if we measure
an average rotation of 20�, one might infer that every
photon passed through the wave plate. Quantum mechani-
cally, this rotation constitutes a weak measurement of the

occupation N̂ of a particular interferometer arm.
The crux of the paradox is that the detected photons

cannot have simultaneously been in the inner arms. To test
this we require a weak measurement of the joint occupation
of two arms. It was previously thought that a physical
interaction between the particles was necessary to make
weak measurements of joint observables (e.g., the electro-
static interaction of ions, as in Ref. [15]). In Ref. [16], it
was shown theoretically that one needs only to perform
single-particle weak measurements on each particle. The
joint weak values then appear in polarization correlations
between the two particles as follows:

hN̂ðMKÞiW ¼ g�1Reh�̂�
zKi; (1)

hN̂ðMPÞN̂ðMEÞiW ¼ g�2Reh�̂�
zP�̂

�
zEi; (2)

where �̂�
zK ¼ ð�̂xK � i�̂yKÞ is the z basis lowering opera-

tor for the polarization of photon K ¼ E or P. We weakly

measure all four combinations of N̂ðMEÞN̂ðMPÞ by placing
half-wave plates (�=2) in all four arms just before the final
beam splitters. We measure the occupation of a particular
pair of arms by rotating only those two wave plates. After
the final beam splitters, we measure average polarization
rotations as well as the correlations specified in Eq. (2)
with polarization analyzers (PAs) consisting of a quarter-
wave plate and polarizer followed by a single-photon
detector (Perkin Elmer SPCM-AQR). Once the Pauli op-
erators are substituted in Eq. (2) and the real part is found,
four Pauli operators remain in the final expectation value.

For each of these Pauli operators, the analyzer must be set
to two positions [e.g., for �̂x, 45

� and �45� ( % and - )
and, for �̂y, right-hand circular and left-hand circular (u

and v)]. Thus, each joint weak value requires eight mea-
surements of coincidence rates at the two dark ports:

Re h�̂�
zP�̂

�
zEi ¼

R%% þ R-- � R-% � R%-
R%% þ R-- þ R-% þ R%-

� Ruu þ Rvv � Rvu � Ruv

Ruu þ Rvv þ Rvu þ Ruv

; (3)

whereRsq is the coincidence rate when the PðEÞ analyzer is
set to sðqÞ. Single weak values for the occupation of
interferomoter PðEÞ are found from these rates by sum-
ming over analyzer settings for photon EðPÞ.
Table I gives the full set of measured coincidence rates

needed to determine the weak values discussed above. The
first two columns indicate which arm occupations are being
weakly measured. The next eight columns give the coin-
cidence rate per 420 s for the various polarization analyzer
settings. Errors in the rates are assumed to be Poissonian,

i.e.,�R ¼ ffiffiffiffi

R
p

. The last two columns give gEðPÞ (with error
�0:003), which was independently measured for each arm
to account for polarization-dependent losses, and g2 ¼
gE � gP.
In Table II, we present the resulting weak values for the

various arm occupations. The bottom cells and rightmost
cells give the weak value for the occupation of a single
arm, and the inner cells give the joint occupation of a pair
of arms. Error bars are derived from uncertainties in g and
an assumption of Poissonian statistics in the rates.
Examining the table reveals that the single-particle weak

measurements are consistent with the clicks at each dark
port; as the IFM results imply, the weakly measured occu-
pations of each of the inner arms are close to 1 and those of
each of the outer arms are close to zero. The weak mea-
surements indicate that, at least when considered individu-
ally, the photons were in the inner arms. However, if we
instead examine the joint occupation of the two inner arms,
it appears that the two photons are simultaneously present
only roughly one-quarter of the time. This demonstrates
that, as we expect, the particles are not in the inner arms
together.
So far, we seem to have confirmed both of the premises

of Hardy’s paradox: to wit, that when DP and DE fire,
NðIPÞ and NðIEÞ are close to 1 (since the IFMs indicate the
presence of the particles in Y)—but that NðIP&IEÞ is close
to zero (since, when both particles are in Y, they annihilate

TABLE I. The measured coincidence rates needed to determine the weak values.

E P R%% R%- R-- R-% Ruu Ruv Rvv Rvu gE gP

O O 556 834 583 730 750 543 666 571 0.674 0.541

I I 2261 772 115 746 1030 762 913 729 0.635 0.570

I O 1152 1079 351 179 484 655 452 654 0.635 0.541

O I 1051 260 329 769 715 609 388 825 0.674 0.570
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and should not be detected). This is odd because in classi-
cal logic, NðIP&IEÞ must be � NðIPÞ þ NðIEÞ � 1; this
inequality is violated by our results. Although NðIPÞ is
93% and NðIEÞ is 92%, the data in Table II suggest that
when E is in the inner path, P is not, and vice versa, hence
the large values for NðIP&OEÞ ¼ 64% and NðOP&IEÞ ¼
72%. The fact that the sum of these two seemingly disjoint
joint-occupation probabilities exceeds 1 is the contradic-
tion with classical logic. In the context of weak measure-
ments, the resolution of this problem lies in the fact that
weak valued probabilities are not required to be positive
definite [5], and so a negative occupation NðOP&OEÞ ¼
�76% is possible, preserving the probability sum rules. In
an ideal implementation of Hardy’s paradox, the joint
probabilities are strictly 0 for both particles to be in inner
arms,�1 for both to be in the outer, and 1 for either to be in
the inner while the other is in the outer arm. These are
indicated in brackets in Table II, for comparison with our
experimental data. Discrepancies are because of the im-
perfect switch efficiency (85� 3%) and IFM probabilities
(95� 3% for the P IFM and 94� 4% for E).

What is the meaning of the negative joint occupation?
Recall that the joint values are extracted by studying the
polarization rotation of both photons in coincidence.
Consider a situation in which both photons always simul-
taneously passed through two particular arms. When a
polarization rotator is placed in each of these arms, it
would tend to cause their polarizations to rotate in a
correlated fashion; when P was found to have 45� polar-
ization, Ewould also be more likely to be found at 45� than
�45�. Experimentally, we find the reverse—when P is
found to have 45� polarization, E is preferentially found
at �45� (and vice versa), as though it had rotated in the
direction opposite to the one induced by the physical wave
plate. As in all weak-measurement experiments, a negative
weak value implies that the shift of a physical ‘‘pointer’’
(in this case, photon polarization) has the opposite sign
from the one expected from the measurement interaction
itself.

In summary, Hardy’s paradox is a set of conflicting
classical logic statements about the location of the particles
in each of two Mach-Zehnder interferometers. It is impos-
sible to simultaneously verify these statements with stan-
dard measurements since testing one statement disturbs the
system and consequently nullifies the other statements. We
attempt to minimize this disturbance by reducing the
strength of the interaction used to perform the measure-
ment. The results of these weak measurements indicate that
all of the logical statements are correct and also provide a

self-consistent, if strange, resolution to the paradox. Since
they do not disturb subsequent postselection of the systems
under study, weak measurements are ideal for the inter-
rogation and characterization of postselected multiparticle
states such as cluster states and processes such as linear
optics quantum computation. This experiment demon-
strates a new technique that, for the first time, allows for
the weak measurement of general multiparticle observ-
ables in these systems.
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